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Abstrad. The concept of the resonating valence bond (RVB) State was originally proposed by 
Anderson for the ground state of the positive-U Hubbard model. However, the on-site pairing 
long-range order is expected to exist in the ground state of the negative-U Hubbard and to be 
incompatible with the RVB order. In this article. we shall rigorously prove Lhat, in fact, lhese 
WO long-range orderings eilher coexist or are suppressed simultaneously in the global ground 
states of the doped Hubbard models. 

Since the discovery of high-T, superconductivity in the rareearth-based copper oxides, 
various new mechanisms have been introduced to explain this remarkable phenomenon 
l1-31. In particular, Anderson and his colIaborators have proposed [1,4] that the physical 
properties of these materials be described by a two-dimensional Hubbard model and, hence, 
have developed a theory of high-T, superconductivity. According to their theory, when the 
on-site Coulomb repulsion is sufficiently strong, the configurations with doubly-occupied 
sites are suppressed in the ground state of the Hubbard model and the spins of electrons are 
paired into short-range singlets. Such a state. is called a resonating valence-bond (RVB) state. 
After doping, two types of quasiparticles emerge. One type can be intuitively identified with 
empty lattice sites, which have unit positive charge but no spin freedom. They are bosons 
and are called holons. The other is an occupied lattice site with unpaired electron spin. 
These are fermions of spin-f and are called spinons. Anderson [I] proposed that the B o s e  
Einstein condensation of holons makes the system superfluid. 

However, with more in-depth research, an increasing number of results provide evidence 
which disagrees with the existence of the RVB states in the two-dimensional Hubbard model. 
For example, by using the second-order perturbation theory and mapping the Hubbard 
Hamiltonian to an antiferromagnetic Heisenberg model in the large4 limit, Baskaran and 
Anderson found [5] that the ground state of the Hubbard model at half-filling is not an RVB 
state. Their conclusion has been confirmed by Zhang [6]. By exploiting a commutation 
relation satisfied by the Hubbard Hamiltonian, Zhang also showed that a non-vanishing 
RVB order parameter requires a non-zero on-site pairing order parameter in the doped 
cases. However, the strong on-site repulsion greatly suppresses the existence of the doubly- 
occupied sites in the ground state of the Hubbard model, let alone a non-zero on-site 
pairing order parameter. In a recent article [7], by studying the correlation functions of 
the RVB operator and the on-site pairing operator, we reestablished Zhang’s results on a 
mathematically rigorous basis. We proved that, if the ground state of the doped Hubbard 
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model has RVB long-range order, then it must also have a corresponding on-site pairing 
long-range order. 

A natural question arising from our study of these correlation functions is whether the 
existence of on-site pairing long-range order in the ground state of the doped negafive-U 
Hubbard model also implies the existence of a corresponding RVB long-range order. In other 
words, we conjecture that the RVB long-range order always coexists with the on-site pairing 
long-range order in the ground state of the negative4 Hubbard model. In this article, we 
shall give this conjecture a rigorous proof. 

Before we proceed to the statement of our theorem and its proof, we would like to 
introduce some definitions and terminology. 

Take a finite &dimensional simple cubic lattice A with NA = Ld lattice points (we set 
the lattice constant a = 1). The Hubbard Hamiltonian is of the following form: 

HA(IL) = --t CC(C~~C,. + cj,cic) + U C ( n i t  - p)(nir - IL) (1) 
a i E A  

where cju (c,) is the fermion creation (annihilation) operator which creates (annihilates) 
a fermion with spin U at lattice site i, ni,, = C ~ ~ C S ~ ,  (ij) denotes a pair of nearest- 
neighbour sites of A, f > 0 and U are two parameters representing the kinetic energy and 
the on-site interaction of fermions, respectively, and pU is the chemical potential. In the 
conventional Hubbard Hamiltonian, the parameter U is chosen to be positive for on-site 
Coulomb repulsion. In this article, we shall consider both positive and negative-U Hubbard 
models. 

It is easy to see that the Hubbard Hamiltonian commutes with the total electron-number 
operator fi = Ccfocio. Consequently, the total number of electrons is a conserved quantity 
and the Hilbert space of Hn(p) can be divided into numerous subspaces [V(N)]. Each 
of these is characterized by a specific particle number N. In each subspace V(N), HA(@)  
has a ground state. By fine tuning the value of p, we can transform the ground state of a 
specific subspace V(N) into the global ground state of  HA(^). 

Next, let us recall the definitions of the RVB and on-site pairing long-range orders. 
Let A j  be a local operator defined on lattice A. Define its Fourier transformation by 

where q is a reciprocal vector. For a specific p, let Yo(p, A) be the global ground state of 
 HA(^). According to Yang [SI, Yo(p, A) has a momenhlm-qo long-range order of operator 
A j  if there is a positive constant a, which is independent of NA, such that 

holds for some reciprocal vector qo. With respect to this definition, a momentum-q RVB 
correlation and a momentum-q on-site correlation in Yo(p, A) are characterized by the 
following operators: 

k k 
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respectively. In the definition of Bj, the sum is over all the nearest-neighbour sites of j .  
Anderson's definition of the RVB state [1,4] is equivalent to saying that Yo(p.A) has a 
momentum-0 RVB long-range order. 

In [7], by exploiting the commutation relations 

[HA(PL), D ( d 1  = tB(q)  - (1 - '&t)UD(q) 

[HA(@), o'(dl= -tB'(q) + (1 - U ) U D ' ( q )  

(5) 

(6) 

we have proved that the RVB and on-site pairing correlation functions satisfy the following 
inequality: 

S*(B(P)) < t - * ( m A ( o ( d )  + 1(1 - ~ ~ ) U I S ( D ( ~ ) ) ) ( ~ A ( B ( ~ ) )  + 1(1- W ) U l s ( B ( q ) ) l  

(7) 

where 

S(A(q))  (%lA'(~)A(q)l'l'o) + (*olA(q)At(~)l~o) 

and 

ma(A(q))  E (Yo(p, A)l[A'(d, [HA(IL), A(q)lll*ooOL, A)) > 0. (8) 

Noticing that both m ~ ( B ( q ) )  and mA(o(q)) are quantities of order O(1) as N A  + CO, 

inequality (7) tells us that, if the global ground state Qo(p, A) of HA(/L) has a momentum-q 
RVB long-range order, it must also have a momentum-q on-site pairing long-range order. In 
particular, if Yo(p, A) is a RVB state, as Anderson defined it, then it must have a momentum- 
0 on-site pairing long-range order. This is impossible when U > 0 is sufficiently large. 

Naturally, after reading the above analysis, one would like to ask whether the existence 
of a momentum-q on-site pairing long-range order in the global ground state YO(& A) of the 
negative-U Hubbard model [9] also implies the existence of a corresponding momentum- 
q RVB long-range order in U+,(& A). Unfortunately, inequality (7) is not useful on this 
problem. 

In the following, we shall prove a new inequality which is complementary to 
inequality (7). As a corollary of this inequality, we show that the existence of a momentum-q 
on-site pairing long-range order indeed implies the existence of a momentum-q RVB long- 
range order in the doped Hubbard model. 

Our main results can be summarized in the following theorem. 

Theorem. When the Hubbard model is doped with holes (electrons), at least one of the 
following inequalities must be satisfied by \U&, A), the global ground state of the doped 
Hamiltonian HA (p):  

( ~ o ( &  A)IDt(q)D(dIQo(pL, A)) < (9) 
t 2  

l(1 - 2P)UI2 
(YolB'(q)B(q)lYo) 

Proof. When the system is doped, the chemical potential coefficient I.L # $ [lo]. Therefore, 
one of the values -(1 - 2k)U and (I  - 2p)U must be negative. For definiteness, let us 
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assume that -(I -2fi)U c: 0 (for the positive-Cl Hubbard model, this condition holds when 
the system is doped with holes). We now show that inequality (9) holds. 

We assume that 

( * o b s  NlD'(q)D(dl~ob+ A)) # 0. (1 1) 

In fact, if this expectation value is zero, then inequality (9) is certainly true. 

(%(& A) IDt (PI H.4 (!J)D(q) Iqo(&. A)) - Eo(%lD'(P)D(q)l Yo) 

Consider the identity 

= ('J'o(o(cL, NlD'(d    CL), Wq)l I*o(P, A)). (12) 

Let (Y,) be the complete set of the eigenstates of Hn(p) .  Inserting the identity operator 
I = C,,, lYm)(Ym1 between the operators on the left-hand side of (12), one can easily see 
that the quantity on the right-hand side of (12) is positive since E&, A) is the lowest 
eigenvalue of HA(/L) .  By using commutation relation (S), we obtain 

0 d (%(!Jq h)lDi(d[HAb), D(q)llYo(P, A)) 
= t(YolDt~q~B(q)l%~ - (1 - 2fi)u(YolD+(Q)D(q)l~o~. (13) 

A little algebra yields 

t (W@, A)lDt(q)D(@lWo(lL, A))  d -zp)u l  (Y~(LL.  NID'(q)B(q)l'@o(k 12)). (14) 

Next, we apply the Cauchy inequality x,unb,, < (E, la,lZ)'/Z(~, lb,lz)i~z to the 
expectation value on the right-hand side of inequality (14). 

(Ydfi, A)lD'(dB(q)l%(fi, A)) = ~ ~ ~ ~ o J ~ ' ( ~ ) l ~ m ) ( , ) ( U 4 n l B ( q ) J ~ o l o )  
m 

< (WP~ ~)lD'(q)D(dlQo(/& N)"2('J'ob, A)lB'(q)B(dI*o(/& A))"'. 

(15) 

By substituting inequality (15) into (14). we obtain inequality (9). 

commutation relation (6) and, then, by following the above proof. 
Similarly, if (1 - 2p)U c 0, one can show that inequality (IO) holds by using 

Our proof is accomplished. 0 

By jointly applying inequalities (7) and (9) (or (IO)), we immediately obtain the 
following corollary. 

Corollary ofthe theorem. For a doped Hubbard model with fi  # i, its global ground state 
Y&, A) has a RVB long-range order if and only if YO(& A) also has an on-site pairing 
long-range order. 

Proof. We first assume that V&, A) has a momentum-q RVB long-range order. Then, by 
definition (3), S ( B ( q ) )  = O ( N A )  as N A  --f 03. Consequently, the quantity on the left-hand 
side of inequality (7) is of order O ( N z ) .  It forces S(D(q) )  = O(NA). In other words, 
YO(&, A) must also have a momentum-q on-site pairing long-range order. 

Similarly, if YO(/& A) has a momentum-q on-site pairing long-range order, then 
inequalities (9) and (IO) guarantee that IYo(p, A) must also have a momentum-q RVS long. 
range order. 0 
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At first glance, this corollary may seem contrary to one’s intuition. But, in fact, it is 
consistent with some previous results obtained by approximate methods. 

When U > 0, as is well known, the ground state of the Hubbard model at half-filling 
is an insulator with antiferromagnetic long-range order. However, when the system is 
highly doped, the ground state becomes a paramagnetic state, which has a gap for the 
spin excitations and, hence, is magnetically disordered. The interesting question is what 
happens when the system is slightly doped. In this region, the phase diagram of the 
positive-U Hubbard model is not yet clear. From numerical analysis, we have conjectured 
the existence of some intermediate phases, such as the RVB phase, which are characterized 
by various coherent short-ranged antiferromagnetic correlations and called spin liquids in 
the literature 111). Our corollary shows that these intermediate phases may actually be 
absent in the positive-U Hubbard model. In other words, the phase transition from the 
antiferromagnetically-ordered phase to the completely disordered paramagnetic phase is 
probably direct as the density of holes increases. 

In contrast, for a many-body fermion system with an attracting interaction between 
particles, we believe that electrons will be paired and that the system will become superfluid, 
no matter how weak the attraction is. The only difference between a weakly-interacting 
system and a strongly-interacting system is that the electrons are paired in the reciprocal 
vector (momentum) space (the BCS theory) in the former case and in the real space in 
the latter case 1121. However, we have not found a sudden transition occurring between 
these two limiting patterns as the attraction intensity changes. In some sense, our corollary 
conforms to this picture. In the negative4 Hubbard model, the amaction is extremely short 
ranged and strong. Our corollary shows that electrons are not only paired on the same site 
but also paired on sites with a non-zero distance. Obviously, this is a residual from the Bcs 
pairing in the reciprocal vector space. 

Finally, we would like to make some remarks. 

Remark 1. We would like to emphasize that the above corollary is not true for the half- 
filled Hubbard models with @ = +. In fact, it has been shown [7] that the RVB long-range 
order is always absent in this case. However, on-site pairing long-range order may exist in 
the ground state of the negative-U Hubbard model at half-filling when [U/ is sufficiently 
large [9]. 

Remark 2.  Although we have only proved our theorem and its corollary for the d -  
dimensional simple cubic lattice, it is not difficult to see that, in fact, these results can 
be easily extended to Hubbard models on an arbitrary bipartite lattice. Naturally, in that 
case, we would have to introduce a generalized definition for the Fourier transformation of 
the local operator Ai since the reciprocal vectors {q} may not be well defined. One can 
find a detailed discussion on this point in [13]. 
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